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Abstract
The Knewton platform is a flexible, scalable system for delivering adaptive learning 

experiences and predictive analytics across arbitrary collections of content in 

different learning environments. Knewton processes student interactions within 

learning applications to personalize digital coursework and effectively reinforce class 

lessons. Knewton supports the learning process with three core services: personalized 

recommendations for students, analytics for teachers and students, and content 

insights for application and content creators.

While adaptive tutoring systems are themselves not new, a traditional problem they 

face is that they are often bound to a single grouping of content. Even where they 

are not, adapting the tutoring system to a new collection of content is an expensive 

and time-consuming process. The Knewton platform builds on decades of research 

in adaptive tutoring systems, psychometrics, and cognitive learning theory, but also 

contains several key innovations that make it possible to quickly and efficiently 

integrate with new collections of content. This enables the benefits of adaptive 

tutoring to reach far more students across more domains more quickly. One of these 

innovations is the Knewton knowledge graph and its associated graphing ontology, 

which provides flexible and expressive ways to describe relationships between 

content. These expressive relationships are drawn from pedagogical reasoning 

and are intended to map easily to human intuition, which allows Knewton and its 

partners to quickly graph new content into an information-rich, machine-readable 

state. The resulting content graph is then used in conjunction with up-to-the-minute 

descriptions of students’ abilities determined by a real-time psychometrics engine to 

deliver intelligent, personalized content recommendations and analytics. Knewton 

scales these operations by employing a service-oriented architecture, which allows its 

inference engines to reliably and efficiently process concurrent activity from tens of 

millions of students.
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Introduction

SECTION 1

Knewton provides a set of tools and services that education companies can use to 

make their learning applications adaptive. These tools, which include individualized 

tutoring, predictive analytics, and student progress reports, are built into a platform 

that is focused at a fundamental level on scalability. This includes scalability both in 

terms of content areas that Knewton can support and in terms of the amount of data 

that Knewton can handle.

Scaling across content domains allows the benefits of adaptive learning and 

individualized tutoring to reach a large number of students working on disparate 

material. By leveraging large amounts of (anonymized) data, Knewton constantly 

refines the accuracy of its models and enhances the usefulness of its technology.

1.1  Background

The Knewton platform is built on decades of research from several interweaving fields, 

including psychometrics, cognitive learning theory, and intelligent tutoring systems (ITS).

Interest in what is now called adaptive learning can be traced back at least to 

educational research in the 1960s (cf. Smith and Sherwood 1976) and received a 

boost when the large positive impact that one-on-one tutoring can have on student 

performance was experimentally quantified. For example, one influential study 

by Bloom (1984) reported that individual tutors can confer an improvement of two 

standard deviations. This dramatic effect provided the motivation for a large body of 

work in adaptive tutoring research (reviewed by VanLehn 2011; Evens and Michael 

2006): If a human tutor can improve learning outcomes so radically, then many of the 

benefits (though likely not all) might be captured by an automated system.

The duration and breadth of research into intelligent tutoring systems is evidence 

not just of their utility and promise, but of the difficulty of their construction. Many 

well-known tutoring systems, e.g., ALEKS (Doignon and Falmagne 1999), AutoTutor 

(Graesser et al. 1999), Andes (Gertner and VanLehn 2000), and Guru (Olney et al. 

2012), represent years of laboratory effort, and specialize in one or a few specific 

domains of study such as mathematics, physics, and biology. This research has yielded 

learning systems with measurable positive effects on student outcomes, as well as 

useful insights into learning itself — such as the observation that tutoring systems 

that present content in a scaffolded way, where content is structured to build up 
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more complex ideas in stages, have an advantage over those that do not (VanLehn 

2011). However, the systems created for this specialized research are not scalable to 

the massive amount of content across all educational domains — which limits the 

educational domains in which they can be used and, by extension, the number of 

students that can benefit from them.

One reason for the difficulty in bringing traditional ITS research to a larger scale is 

the problem of modeling student knowledge and understanding (see Graesser et al. 

2012, for review). Consider just the problem of handling a wrong answer: There are 

a tremendous number of ways to make a mistake, and each way reveals different 

information about a student’s misconceptions. This problem is clearly illustrated by Self 

(1990), in discussing how to diagnose possible missteps in a simple calculus problem:

If there are m possible transformations (m ≈ 30 in this case), n 

mistransformations for each of these (say, n ≈ 5) and up to p steps to 

a solution (say, p ≈ 10), then there may be up to [m(n + 1)]p paths to 

analyse (about 1024), which is clearly intractable. 

The highly undesirable outcomes from failing to address or acknowledge this problem 

are illustrated in the case study by Erlwanger (1973), in which a young student learning 

from a highly structured (but non-computerized) system for teaching mathematics 

developed nonsense rules of computing fractions (rather than a good understanding) 

in order to satisfy the teaching system.

The toughness of this problem has led to the development of several different tutoring 

system approaches (reviewed by Nwana 1990; Anderson et al. 1990) and useful threads 

of research. Some of the most influential of these include the artificial intelligence 

and natural language processing approach of Carbonell (1970), the cognitive modeling 

approach of Anderson (1996), and the abstract knowledge space mapping of Doignon 

and Falmagne (1999). While these approaches were necessary and important steps in 

the development of modern intelligent tutoring systems, none were developed with the 

intention of bringing the benefits of adaptive learning to as many students across as 

many content domains as possible.
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1.2  Overview of Knewton’s Approach

Figure 1: The structure of Knewton’s platform. 

Knewton pairs information about content (via the Knewton knowledge graph (top)) with student response 

data (left) to make real-time psychometric inferences about student abilities. These inferences are in turn used 

to power predictive analytics on student outcomes (bottom) and to generate personalized recommendations 

for what to study next (right). Knewton’s accuracy improves as more data are collected, since Knewton can 

use student response information to revise and upgrade the models and parameters used in the analytics and 

recommendation systems (bidirectional arrows).

Knewton uses a novel instrument to address the problems of student modeling that 

focuses directly on scalability across content: the Knewton knowledge graph (see 

Section 2 for more detail).

The Knewton knowledge graph represents arbitrary content in a semantic graph 

structure. This structure provides Knewton a way to diagnose student understanding 

(and misunderstanding). It can also power intelligent tutoring strategies (reviewed by 

Graesser et al. 2012) such as frontier learning (Sleeman and Brown 1982), building on 

prerequisites (Gagné 1985), and remediating deep misconceptions (Lesgold et al. 1988).

The Knewton knowledge graph is built using the Knewton adaptive ontology, an 

intuitive and flexible set of objects and relationships that are easy to learn, easy to 

express content relationships in, and powerful enough to use as a basis for analytics 

and adaptive tutoring.

As is illustrated in Figure 1, within the Knewton platform, the Knewton knowledge 

graph is used to contextualize student responses for a real-time psychometrics engine. 

This engine is in turn used to power a predictive analytics engine and a personalized 

recommendation system. The models used in the psychometrics, analytics, and 

recommendation systems both adapt to individual students and become more accurate 

as more students use the system (Sections 3 and 4).
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The Knewton knowledge graph is a novel approach to the problems outlined in Section 

1: enabling adaptivity and individually targeted predictive analytics without explicit 

detailed cognitive models, and without lengthy and difficult re-implementation (or re-

invention) for each educational content area.

The notion of representing content relationships in a graph structure is not new, and 

the Knewton knowledge graph builds on previous work (Novak 1990; McAleese 1999; 

Doignon and Falmagne 1999; Hwang 2003). However, where the Knewton knowledge 

graph innovates is in its flexible and expressive ontology, which allows diverse content to 

be easily represented and connected with each other. This makes the Knewton knowledge 

graph a core instrument in enabling Knewton’s scalability across content domains.

Elements in the Knewton adaptive ontology consist of modules (pieces of content), 

concepts (abstract but intuitive notions of ideas that the content teaches and assesses), 

and relationships between these two. Since concepts are abstract, rather than tied to 

a particular book or pedagogy, they can be used to describe relationships between any 

modules, even those existing in different books, subject areas, or school years.

Types of relationships in the Knewton adaptive ontology include containment (content 

or concepts belonging to larger groups), assessment (content providing a view on 

student understanding), instruction (content teaching a particular concept), and 

prerequisiteness (concepts requiring understanding of earlier concepts).

The content in a typical textbook can be expressed in the Knewton adaptive ontology 

in a few weeks of manual effort by a trained subject matter expert. Automated methods 

can also assist in generating a knowledge graph by combining content data and student 

interaction data. When faced with large content collection, Knewton works with 

partners to define and staff a scalable graphing process.

Flexible, Scalable Content  
Graphing at Knewton
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Figure 2: A representation of the Knewton knowledge graph.

The Knewton knowledge graph allows diverse content to be easily represented and connected with each other. 

For example, concepts (circles) are connected by prerequisite relationships (arrows).

As mentioned in Section 1, the Knewton knowledge graph allows us to generate 

adaptive recommendations based on pedagogical criteria, such as those reviewed 

by Graesser et al. (2012), including frontier learning, building on prerequisites, and 

providing remediations.

The Knewton knowledge graph is also a key input in the Knewton predictive analytics 

engine. The analytics engine, analogously to the recommendation engine, makes use 

of the student psychometrics updates in accordance with the Knewton knowledge 

graph. In addition, the analytics engine provides a set of inferential models and user-

facing real-time predictions which offer students and instructors a usable summary of 

student progress (see Section 4).

32

1.1

10 .11.2

2.1

2.2

3. 1
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SECTION 3

As mentioned in Sections 1 and 2, Knewton’s first step in providing adaptive 

recommendations and analytics is to make psychometric inferences on student 

knowledge and abilities. While several psychometric testing approaches exist (Peña-

Ayala 2014, Lord 1958), the basis for Knewton’s psychometric engine is a popular and 

well-studied approach named Item Response Theory (IRT) (covered in the next section). 

Knewton also incorporates many of the ideas behind such approaches as multi-concept 

models and temporal models of students’ proficiencies.

3.1  Item Response Theory

IRT is a family of models that describes the probability of a student answering a question 

correctly as a function of a nonlinear relationship between student ability (θ), item 

difficulty (β), and discrimination (α). The nonlinear function (typically a sigmoid) is called 

an item response function. This class of models is most closely associated with Frederic M. 

Lord, who published a monograph on the subject in 1952 (Lord 1952; Wainer 1983).

Figure 3: Typical item response functions. 

When the difficulty β is equal to a student’s proficiency θ, the probability that the student will answer correctly 

is 0.5. As proficiency becomes much lower than the difficulty, the probability of answering correctly trails off 

to 0; as proficiency grows, the probability increases to 1. The discrimination of a question is represented by the 

breadth of proficiencies over which that transition occurs.

Measuring Student Knowledge

(θ)
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Figure 3 gives several examples of item response functions and the probabilities that 

students with varying ability levels will correctly answer a question.

Given this specification and data, standard algorithms like gradient ascent and 

expectation maximization can be used to estimate item-level parameters and student 

proficiencies simultaneously. Students who tend to answer more questions correctly 

will have higher proficiencies, and questions which tend to be answered correctly more 

frequently will be less difficult.

While IRT is very popular and has a proven track record in psychometric testing, 

many common IRT models make assumptions that can be limiting in the context of 

adaptive learning. For example, a common assumption is that a student’s proficiency 

is constant, or at least that it is being measured at a single instant. This does not match 

the expectations of an adaptive learning system, where assessments are continuously 

administered over a long period of time in which the student is expected to learn.

Another common limiting assumption in IRT models is that the overall ability of a 

student can be condensed into a single parameter. While this assumption might be 

reasonable when estimating student abilities in a single summative assessment, it is 

much less likely to be true in an adaptive learning environment where students interact 

with content across multiple fine-grained concepts.

Modeling these finely grained skills requires extending IRT to support multiple 

proficiencies, and providing a way for these proficiencies to interact. This interaction 

may be compensatory (where a high ability in any relevant concept can be used to 

answer a question), or non-compensatory (where sufficiently high proficiency in 

every relevant concept is necessary to answer a ). Understanding which 

type of interaction is relevant at which time has been an active area of research 

(Reckase and McKinley 1983b; Reckase 1985) since the introduction of the idea by 

Rasch (1961).

3.2  Knewton’s Approach: Generality and Scalability

Knewton’s psychometric engine handles both of the abovementioned issues with 

traditional IRT’s simplifications. The issue of learning and forgetting is handled by 

allowing student proficiencies to change over time. The issue of dealing with multiple 

fine-grained concepts is handled by taking advantage of information contained in the 

Knewton knowledge graph to understand how proficiency in one concept interacts 

with proficiency in others.
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To illustrate Knewton’s approach, consider a sample IRT model that only has a single 

difficulty variable βi per question i and a single difficulty variable θs per student s. If 

student s answers item i, then those two random variables are linked by a third random 

variable rsi, which takes the value correct with probability psi = f(θs – βi) and incorrect with 

probability 1 – psi. Here f  is an item response function as shown in Figure 3.

Knewton then introduces not just a single parameter θs per student s, but a single 

parameter βsc per student s per concept c. Further, each item i gains one parameter per 

concept, βic. If a student answered item i, then all the θsc and βic would be linked by a 

random variable rsi which takes the value correct with some probability psi and incorrect 

with probability 1 – psi. Here psi would be some function of all θsc and βic.

For instance, in the compensatory setting, when a student can understand any 

combination of concepts in order to answer a question correctly, the link function 

might be                          

                     psi = f    Σ θsc  –  βic

where f  is a traditional item response function. The more total proficiency that a 

student has gained, the more likely she is to respond correctly to a question. 

On the other hand, in the non-compensatory setting, when a student cannot answer a 

question without understanding all of a set of concepts, the link function might be 

    psi = Π f   θsc –  βic   ,

so that even if she had very high proficiency in one concept, having very low 

proficiency in another concept would tend to make her overall chance of correctly 

answering a question low (since for any numbers 0 < a, b < 1, ab < a, and ab < b). Or 

perhaps the correct representation is something in between — for instance, when two 

concepts overlap and can only partially compensate for each other.

Instead of taking this traditional approach, the knowledge graph allows Knewton to 

work with concepts which are very fine-grained. The edges in the graph are used to 

describe relationships between individual concepts such that it becomes possible to 

draw inferences about, for instance, how a student’s proficiency in a prerequisite of a 

concept changes, given changes in her proficiency with respect to the original concept. 

This and other prior beliefs between a student’s proficiencies allow Knewton to do 

Bayesian updates on her proficiencies as she does more work.

c

c

(1)

(2)

)

)
)

) 
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Similarly, Knewton addresses learning by allowing proficiencies to change over time. 

The introduction of a set of time-indexed random variables, and appropriate priors, 

enables Knewton to model how a student’s proficiency changes over time. 

These modifications to the IRT framework, coupled with the knowledge graph and 

sufficient student interaction data, enable both productive interpretation of student 

interaction data, and tractable real-time inference computation.

3.3  Alternative Approaches: Modeling Mental 

Processes Instead of Effects

The previous sections describe how Knewton modifies traditional IRT models by 

generalizing some of the assumptions made by Lord’s original model. Still, all of 

Knewton’s models make assumptions about how a student’s mental state (e.g., her 

proficiency and her engagement) affects her interactions with the world (e.g., her 

answers to questions and how long she takes to answer them).

This leads to the question of whether it is possible to model the mental state of a 

student more directly. Several researchers have built such frameworks, notably the 

ACT-R framework (Anderson 1996; Anderson et al. 2004), which models cognitive 

processes directly. However, this model, while expressive and often explanatory, has 

required many years of laboratory work to build and refine. To extend this model 

for each new domain of knowledge would likely require similar investments and 

many years of careful study. As a consequence, such a process does not scale to the 

vast amount of content available across all knowledge domains. While many such 

implementations are successful in their original subject areas, they have not expanded 

to new domains. Instead, Knewton builds models of student behavior, mediated by 

the knowledge graph described in Section 2. These models incorporate Knewton’s 

estimates of student-specific parameters, whose structural relationships are informed 

by the knowledge graph.
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After updating its estimates of student knowledge and abilities via the IRT-based 

psychometric engine (Section 3), Knewton is able to begin the work of providing 

adaptive recommendations and predictive analytics via its inferential engines.

These engines (outlined in Section 1) consist of real-time updating models, each of 

which uses information aggregated across the students interacting with Knewton to 

better describe each student’s current overall status (e.g., proficiency, engagement, and 

work habits), as well as to predict student outcomes and target interventions.

Each of these engines derives a large benefit from increasing quantities of both content 

and active students in the Knewton platform. Model accuracy can be dramatically 

improved via the additional information (for example, student knowledge can be more 

accurately measured if the difficulty of the questions they are responding to is better 

estimated), and because model predictions can be more thoroughly tested and calibrated.

4.1  The Recommendation Engine

The recommendation engine consists of models that power the adaptive system behind 

Knewton’s recommendation service.

4.1.1  EXAMPLE: MODELING ENGAGEMENT

At a given moment in time, a student’s engagement with a lesson or a piece of 

content can influence how much she learns from that experience. For instance, some 

research has indicated that boredom is associated with poorer learning outcomes and 

a propensity for gaming the system and that confusion is a common state in digital 

learning environments (Baker et al. 2010). Knewton incorporates a model of student 

engagement to make recommendations as effective as possible.

When a student’s engagement drops, her productivity also tends to drop, sometimes 

to the point of ending the session entirely. The data hint that perhaps some content 

is more likely to cause a student to quit working than others, and indeed, that is 

frequently the case. One might think that content with a high quitting rate should 

never be recommended to students. But in certain cases, the content might provide 

reasonable instruction, just on a very difficult concept. In these cases, Knewton’s 

proficiency models can reveal whether students tend to perform better after having 

The Knewton Inferential Engine
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worked through this particular piece of content, even though it is challenging, and can 

use that information to make more informed recommendations.

Knewton’s recommendation engine combines such insights with several other models 

in order to produce a final, personalized recommendation.

4.2  The Analytics Engine

In parallel with the recommendation engine, Knewton’s analytics engine provides 

real-time inferences for predictive analytics and student reports. Just as with the 

recommendation engine, the models in the analytics engine benefit tremendously 

from the scale of data collected by Knewton. This is illustrated here with two examples: 

the Active Time metric and the Work Remaining metric.

4.2.1  EXAMPLE: ACTIVE TIME

The Active Time metric tracks how much productive time students spend working 

with educational materials. While this sounds like a simple task (merely adding up the 

amount of time a student spends answering questions on an educational application) 

it is in fact more complicated. For example, students may leave learning application 

windows open while engaging in other activities, or may answer questions in a rapid, 

disinterested way, or may quickly click through multiple choice options in search of the 

correct answer if the learning application allows it. In these cases, while the student 

technically has spent time on the learning system, it is not active time — time that is 

spent engaged in learning.

In order to determine how much of the reported time spent on the learning system 

is active for each student, the analytics engine uses an inferential model that takes 

advantage of the volume of data available to Knewton.

The inferential model for Active Time is based on a version of collaborative filtering 

(Goldberg et al. 1992) that is modified to detect outlier events. Briefly, each interaction 

from student s on item i has a duration d(s, i) that is assumed to be a product of a 

student-specific rate (rs) and an item length (li), plus a component es, i which represents 

deviations from the expected duration due to loss of engagement with the content. 

In typical learning data, many students interact with the same item, and a single 

student can interact with many different items. The model uses these relationships 

by collecting the interaction durations into a sparse matrix D, where entry s, i in the 
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matrix represents the duration of student s’s interaction with item i. This sparse matrix 

is then approximated via a rank-1 estimate E defined as 

         E = rLT

where r = (r1, r2, … rn) and L = (l1, l2, … lm), so that the deviation between E and D (at the 

existing entries of D) is due to non-zero engagement components es, i.

A traditional matrix factorization method might attempt to minimize the discrepancy 

quantity Σs, i (d (s, i) - Es, i )2 by finding optimal parameters r and L to explain D. For 

student data however, outliers in interaction durations are expected to be common 

as students become distracted, click through content hurriedly, or leave their work 

open as they do other activities. So instead of using the traditional L 2 norm as above 

(which is sensitive to outliers), Active Time uses a simple median calculation to find 

the factorized matrix E. While another L p norm where p < 2 could also work, the more 

straightforward median calculation has the advantage of efficiency (while maintaining 

its robustness to outliers) given the large amount of data that Knewton collects.

Once the parameter vectors r and L are computed, each new interaction duration 

that is received can be compared to the predicted duration given the student and item 

components. This comparison is used to determine the active time awarded for the 

interaction.

This approach allows Knewton to leverage data collected from many students’ activity 

across the entire range of content to discover what reasonable response durations are 

for the particular student and item in question, and to infer the appropriate active time 

during an interaction.

4.2.2  EXAMPLE: WORK REMAINING

The Work Remaining metric predicts how much activity Knewton expects that a 

student will have to complete before she is proficient in a content area. While students 

might be learning and progressing at a good pace, it can sometimes be unclear how 

much progress is left to attain an educational goal or whether that remaining work is 

likely to be covered in the time left without any interventions.

The Work Remaining metric uses a version of the IRT model (Section 3) that is able 

to gauge how quickly students are gaining proficiency as they work through content. 

Since Knewton will often need to predict how quickly a student will be able to learn 

a content area before they have actually begun working on it, a form of matrix 
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completion is again used. Here, for each student s and content area c, there is assumed 

to be a quickness parameter qs and a toughness parameter tc that together with an error 

term es, c form a prediction for how much practice it takes a student to gain proficiency 

in a content area: p(s, c) =qstc + es, c.

As is the case with the Active Time metric (above), the Work Remaining metric assumes 

a rank-1 approximation to a matrix P with the form 

    P = qtT

where q = (q1, q2, … qn ) and t = (t1, t2, … tn ). The vectors q and t are computed using a 

large-scale matrix completion algorithm, which yields a method to estimate how much 

instruction and practice a student might require on novel content.

While these estimates (together with estimates of proficiency) are useful for 

understanding a student’s progress on the content they are currently working on, by 

combining these estimates with the learning paths implied by the Knewton knowledge 

graph (Section 2), they can also be used to predict how much instruction and practice a 

student will require for a larger group of content, or for educational goals several days 

or weeks in the future.

Further, these estimates can be compared with actual outcomes. This is done by 

defining a true value as the amount of work (instruction and practice) a student 

requires to become proficient and comparing it to the prediction derived from the 

model and knowledge graph. Occasionally, students who perform less work than 

expected gain proficiency in the content area nonetheless, and students who perform 

more work than expected still fail to gain proficiency. By tallying these situations 

according to the magnitude of the implied error, Knewton is able to detect bias and 

create estimates of the Work Remaining confidence bounds.
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Each of the inferential models included in the psychometrics, recommendation, and 

analytics engines benefits from the massive amount of data that Knewton is able to 

process. Handling this amount of data requires a modern, scalable architecture that 

is sophisticated enough to run complex statistical operations, reliable enough to 

keep inferential engines available at all times, and fast enough to perform necessary 

calculations in milliseconds.

5.1  The Knewton Architecture

The Knewton infrastructure is built using a service-oriented architecture (Papazoglou 

2003), where each service is responsible for solving a modular and well-defined 

problem. The services themselves communicate both with each other and with partner 

applications through an API to create a flexible and manageable ecosystem.

Figure 4: Knewton’s modular architecture. 

Partners send data and make requests to an API layer, which handles issues like authentication and delegates 

the request to the proper internal service. Services in the core layer handle basic information such as student 

enrollment and content structure (as represented in the Knewton knowledge graph). The core layer services are 

responsible for keeping this information current in a data storage layer, and for fetching relevant parts when 

requested. The application layer contains the machinery for inferred student metrics and recommendations. 

The application layer makes use of the core layer to retrieve necessary information when updating based on 

messages from the API.

Infrastructure at Scale
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Knewton services are divided into several layers (Figure 4), including a core layer and 

an application layer. The core layer communicates to databases and makes relevant 

information available to the application layer in a digested and usable form. An 

example of a core service is the graph service, which keeps up-to-date information 

on content that has been graphed according to the Knewton ontology (Section 2), and 

delivers on demand relevant sections of this graph (with version history) to models 

running the application layer. Since the entire graph is too big to be easily transferred 

between services, the graph service is responsible for communicating with the graph 

database, efficiently fetching and returning only the relevant parts of graph data.

The application layer contains the services that are responsible for the inferential 

engines described earlier: the psychometrics engine, the recommendation engine, and 

the analytics engine. Each of these relies on the data managed by the core service layer 

being readily available. Every message received about a student’s interactions with 

content involves the concerted effort of each of these services to maintain up-to-the-

minute accurate recommendations and student analytics. 

The arrows in Figure 4 show the order in which data are processed by the Knewton 

architecture. Messages are received from partner applications by an API service, which 

in turn informs other services of the message as needed. Some messages (e.g., adding 

content to the Knewton knowledge graph or enrolling a student into a course) can be 

handled by talking to the appropriate core service, which will update the database layer 

with the new information. Messages on student activity, however, are handled by the 

application services, which in turn request relevant data from the core services and 

update their state to reflect the new information and make new inferences available to 

the API layer.

5.2  Engineering for Reliability

Since Knewton is responsible for delivering real-time student analytics and personalized 

recommendations to many educational partners across the world, its infrastructure 

also has to be as reliable as possible. Unfortunately, computing infrastructures have to 

contend with power outages, network downtime, hardware failures, and software bugs 

— all of which become more likely as the system grows in size.

A service-oriented architecture can help mitigate these barriers to reliability. The 

strategy is straightforward: check periodically that each individual service is working 

correctly, and if it is not, then alert appropriate parties via e-mail and switch to a 
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backup copy of the service. Since Knewton works in a cloud environment where 

starting a service is simple and fast, it can avoid having backup copies running 

constantly, and simply start them when necessary. Additionally, single services can 

be spread across different data centers, with different machines handling different 

availability zones. This allows a temporary service outage to be confined to a single 

geographical (or logical) location.

There are some complications with this strategy. For instance, other parts of the system 

must be continually made aware of which physical machine is currently handling a 

specific service. The solution Knewton employs to solve this problem is called service 

discovery, and involves employing a separate service responsible for maintaining a 

highly available and reliable table of other services’ addresses (an example is Eureka; 

Netflix 2012).

Even with a system that is as robust as possible to problems and outages from power, 

network, hardware, and software problems, there is still a chance that data could be 

lost. Further, there is the need to warehouse historical data in an accessible and reliable 

location for new prototyping and quality assurance work. For these reasons, Knewton 

also employs a data warehouse pipeline that is able to copy (anonymized) data from 

backups of its databases into more permanent (and convenient) storage (Neokleous 2013).
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SECTION 6

Knewton’s approach to scalability across content, as well as its emphasis on leveraging 

large amounts of student data to improve outcomes, represent innovations in the field 

of adaptive tutoring. The science and technology built to support these innovations 

(including the Knewton knowledge graph, developments in real-time psychometrics 

and inferential models, and a scalable platform infrastructure) enable adaptive 

tutoring, personalized recommendations, and up-to-date predictions on student 

outcomes. As the data available to Knewton increase, and as the requirements of 

education continue to evolve, this approach will allow Knewton to continue to grow 

both in its ability to scale across content, and its ability to develop new and useful 

learning products.

Conclusion
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